Erik Schwartz, Chief AI Officer at Tricon Infotech, looks at the ways that AI automation is rewriting the risk management rulebook.

In an era which demands flexibility and fast-paced responses to cyber threats and sudden market shifts, risk management has never been in more need for tools to support its ever-evolving transformation. 

AI is the key player which can keep up and perform beyond expectations. 

This isn’t about flashy tech for tech’s sake; rather, it’s about harnessing tools that can make businesses more resilient and agile. Sounds complicated? It’s not.  Here’s how your company can manage risk with ease and let your business grow with AI. 

Why should I care?

Put simply, AI-driven automation involves using technology to perform tasks that were traditionally done by humans, but with added intelligence. 

Unlike basic automation that follows set instructions, AI systems learn from data, recognise patterns, and even make decisions. In risk management, this means AI can help identify potential risks, assess their impact, and even respond in real time—often faster and more accurately than human teams.

Think of it like this: In finance, AI can monitor market fluctuations and automatically adjust portfolios to reduce exposure to risk. In operations, it can predict supply chain disruptions and recommend alternative strategies to keep production on track. AI helps by doing the heavy lifting, leaving leaders with clearer insights and the ability to make more informed decisions.

The insurance industry is a stand-out example of how AI-powered risk management can be done. It is transforming the sector by streamlining underwriting and claims processing, making confusing paperwork a thing of the past and loyal customers a thing of the future.

The Potential

Risk is part of doing business. We all know that, but the nature of risk has evolved, calling into question just how much companies can tolerate. Thanks to the interconnectedness of our digital and global economies, we can make fewer compromises and implement effective coping strategies to mitigate potential disruption which can ripple within minutes. 

For example, if you are a large international organisation, AI-driven automation can prove to be a valuable assistant when dealing with regulatory changes. JP Morgan jumped at the chance to incorporate AI’s uses. It has integrated AI into its risk management processes for fraud detection and credit risk analysis. The bank uses machine learning algorithms to analyse vast amounts of transaction data, detecting unusual patterns and flagging potentially fraudulent activities in real time. This has helped them significantly reduce fraud losses and improve the efficiency of their internal audit processes.

Additionally, the pace at which data is generated has exploded, making it nearly impossible for traditional risk management processes to keep up. 

This is where AI’s ability to process vast amounts of data quickly and accurately comes in handy. It offers predictive power that helps leaders anticipate risks instead of reacting to them. AI doesn’t get overwhelmed by the volume of information or distracted by the noise of the day; it consistently analyses data to identify potential threats and opportunities.

The automation aspect ensures that once risks are identified, responses can be triggered automatically. This reduces the chance of human error, speeds up reaction times, and allows teams to focus on strategic tasks rather than manual monitoring and troubleshooting.

The limitations

While a powerful tool, it doesn’t make it invincible or infallible. 

To ensure proper implementation, leaders must take note of its limitations. This means rolling out training across company departments to educate and upskill staff. This can involve conducting workshops, recruiting AI experts to the team, and setting realistic expectations from day one about what AI can and can’t do.

By teaming up with AI, company leaders can create a sandbox environment where you interact with AI using your own data. This practical approach simplifies the transition more than a lecture in a seminar room and can be tried and tested without full commitment or investment.

How AI Automation Can Make an Impact

There are several critical areas where AI-driven automation is already making a significant impact in risk management:

Cybersecurity is a sector that has huge potential for growth. As cyber threats become more sophisticated, AI systems are helping companies defend themselves. These systems can identify patterns of malicious behaviour, recognise the latest attack methods, and automate responses to neutralise threats quickly. 

This reduces downtime and limits damage, allowing companies to stay one step ahead of hackers. AXA has developed AI-powered tools to manage and mitigate cyber risks for both its operations and its customers. By leveraging AI, AXA analyses vast amounts of network data to detect and predict cyber threats. This helps businesses proactively manage vulnerabilities and minimise cyberattacks. 

The regulatory landscape is constantly shifting, and keeping up with these changes can be overwhelming. AI can automate the process of monitoring new regulations, assess their impact on the business, and ensure compliance by flagging potential issues before they become problems. This is especially critical for industries like finance and healthcare, where non-compliance can result in heavy fines or legal trouble.

Supply Chain Management also benefits from its implementation. Walmart uses AI to monitor risks in its vast network of suppliers. The company has developed machine learning models that analyse data from its suppliers, including financial stability, production capabilities, and past performance. AI also evaluates external data sources such as economic indicators, political risks, and natural disasters to identify potential threats to supply chain continuity.

How Leaders Can Implement AI-Driven Automation in Risk Management

How to embrace its innovation:

Identify Key Risk Areas: Start by mapping out the areas of your business most susceptible to risk. Whether it’s cybersecurity, regulatory compliance, financial instability, or operational inefficiencies, knowing where the biggest vulnerabilities lie will help you focus your AI efforts.

Assess Current Capabilities: Look at your current risk management processes and assess where automation could provide the most value. Are your teams spending too much time monitoring data? Are there manual tasks that could be streamlined? AI can enhance these processes by improving speed and accuracy.

Choose the Right Tools: Not all AI solutions are created equal, and it’s essential to choose tools that fit your specific needs. Work with trusted vendors who understand your industry and can offer customised solutions. Look for AI systems that are transparent, explainable, and adaptable to evolving risks.

Monitor and Adapt: AI systems need regular updates and monitoring to remain effective. Make sure you have a plan in place to review performance, adjust algorithms, and update data sets. This will ensure your AI tools continue to provide relevant, actionable insights as risks evolve.

If you don’t have the right talent, or capacity, or you’re unsure where to start, choose a reliable partner to help accelerate your use case and really get the best out of it. 

AI-driven automation is reshaping the future of risk management by making it more proactive, predictive, and efficient. Company leaders who embrace these technologies will not only be better equipped to navigate today’s complex risk landscape but will also position their businesses for long-term success. 

According to Forbes Advisor, 56% of businesses are using AI to improve and perfect business operations. Don’t risk falling behind and discover the wonders of AI today.

  • Data & AI

Related Stories

We believe in a personal approach

By working closely with our customers at every step of the way we ensure that we capture the dedication, enthusiasm and passion which has driven change within their organisations and inspire others with motivational real-life stories.